Typically, a DBMS XE "DBMS" provides the following facilities

· Data Definition Language XE "Data Definition Language" \t "See DDL" (DDL XE "DDL")

It allows a database designer to define the database using a Data Definition Language XE "Data Definition Language" \t "See DDL" (DDL XE "DDL") provided for the particular DBMS XE "DBMS" . The DDL allows the designer to specify the data types and structures, and the constraints on the data to be stored in the database (see Figure 5.3 on page 60).

· Data Manipulation Language XE "Data Manipulation Language" (DML)
It allows users to insert, update, delete and retrieve data from the database through a Data Manipulation Language XE "Data Manipulation Language" (DML). Having a central repository for all data and data descriptions allows the DML to provide a general enquiry facility to this data, called a query language XE "query language" \t "See SQL"

 XE "query language" . Using a query language, directly or indirectly, enables new lines of enquiry to be constructed and satisfied quickly. A query language is sufficiently high level to allow non-technical personnel to use it, easily. The most common query language is the Structured Query Language XE "Structured Query Language" \t "See SQL" (SQL –pronounced ‘S-Q-L’).

· View Mechanism

The DBMS XE "DBMS" provides a view mechanism XE "view mechanism" that allows each user to have his or her own view of the database. The DDL XE "DDL" is used to define a view that is a subset of the database. For example, a program to print a list of staff names, their qualifications and subjects that they teach would be granted a view of the database that included just these data items and excluded all others as shown in Figure 2.2.

Figure 2.2 Restricting an application’s view of the database

· Multiple indexes XE "Indexing:Multiple indexes"
An index is a mechanism for reducing the time taken to find a specific item of data in a database. A database index works in a similar way to a user of the index in this book. If you want to use this book to find out about the topic “multiple indexes“ then you have a choice. You could open this book at the beginning and work your way, line by line, page by page, through the text looking for the phrase “multiple indexes”. Eventually, your search will be successful on page 19. Luckily for you, by choosing the phrase “multiple indexes” you only had to search 19 pages, had you chosen the phrase “solutions to questions” you would not have struck lucky until page 107. However, there is a much quicker way to search based upon searching the index pages at the back of this book. Searching the index line by line, page by page for the phrase “multiple indexes” is much quicker. This index stores the number of the page that we need to visit to read about “multiple indexes”. So, having found the correct entry in the index we can now turn directly to the desired page.

An index in a database can store each value of an indexed data item (field), e.g. student enrolment number, together with the page number in the storage medium where the data belonging to this value is stored. For example, information stored in a database about a particular student such as surname, home address, et cetera may be quickly found if an index has been created that stores every student’s enrolment number and the location of the corresponding information.

Indexes may also be created on other fields of a student’s record, e.g. surname, address. However, since some fields such as the surname are unlikely to be unique, the entries in the index may reference more than one location, just like the entries in the index for this book. An index on a unique field is known as a primary index whereas an index on a non-unique field is known as a secondary index.

· Indexing Overheads XE "Index overheads"
Indexes have to be constantly kept up to date. When a new data value is added or modified the corresponding index must be updated. This takes time. This is called an update overhead.

· Three Level Architecture of a DBMS

Figure 2.3 Three Level Architecture of a DBMS

The storage schema specifies how the data is actually stored. The logical schema specifies what data is stored in the database. The external schema specifies what views of this data are available to users.

Summary of problems solved by the database and database management approach

· Problem: Unproductive maintenance

 In a file-based system, where every application shares same view of data, all applications have to be changed and re-compiled when data structure requirements of one is changed.

Solution: In a database management system program-data independence or data independence is enforced via a three level schema architecture consisting of storage, logical, and user schemas. New data fields may be added/existing fields may be removed without affecting any existing applications that do not make use of the fields.

· Problem: Data inconsistency

Where each application has its own set of files (application-centred approach) this means several copies of data are kept and simultaneous alterations to the copies cannot take place.

Therefore, the copies can become inconsistent with one another.

Solution: In the database approach data is pooled therefore duplication is eliminated or controlled.

· Problem: Data redundancy

Where each application uses its own files several copies of the data exist that take up more storage space than is necessary.

Solution: In the database approach data is pooled therefore duplication eliminated or controlled.

· Problem: Security problem

In a file-based approach applications have access to more fields of data than are essential. This is because the unit of storage is the file. This means it is difficult to control user access to the data.

Solution: In a database management system users access to data is controlled via the view mechanism which allows user views (local views / external views) of the data to be defined. In a database approach the unit of storage is the data item. Thus access can be restricted to a single item of data if necessary.

· Problem: Data not easily shareable

In a file-based system where each application has its own set of files data is not easily shareable between applications because

(a) it is held in different files

(b) it could be stored on different computer systems.

Solution: In the database approach the data is made shareable because it is pooled in one place.

· Problem: Slow response to ad-hoc enquiries
In the application-centred approach each new enquiry requires a new file-based program to be written by an experienced programmer. This is a slow, time-consuming process.

Solution: Database systems include support for query languages and a mechanism called Query-By-Example (QBE) which is a form-based method of interrogating a database. Since query languages and QBE are simple to learn it is a relatively quick exercise to query a database to obtain an answer to an ad-hoc enquiry.

· Problem: Limited number of ways that data can be selected and retrieved

In the file-based approach there are a limited number of ways that data can be organised. This in turn means a limited number of ways that data can be accessed and retrieved from a file.

Solution: The database approach allows data to be accessed and retrieved in many different ways. It is possible to have multiple indexes. Thus the benefits of, namely faster retrieval of data, can be applied to many different data items (fields) in the database.

· Problem: Difficult to maintain or to respond to changing requirements and change of storage medium

In the file-based application-centred approach whole files need to be reconstructed and application programs altered. This can mean a lot of work much of it unnecessary.

Solution: In a database management system it is a relatively easy task to add new fields/tables/alter the storage medium because of level structuring. In this approach the unit is a data item.

· Problem: Data integrity poorly controlled

In the application-centred or file-based approach it is the programmers’ responsibility to write program code to validate data entered into the system. This does not always get done.

Granted view

Salary

Main Subject

Qualifications

First Name

Surname

Address

View 1

View 2

View 2

Base Table 1

Base Table 2

Base Table 3

File 1 + indexes

File 2 + indexes

File 3 + indexes

File 4 + indexes

File 5 + indexes

Storage

Schema

Logical or Conceptual

Schema

External

Schema

or User Views

User 1

User 1

User 1

(Dr K R Bond 2000

