Queues

A linear queue is an abstract data type that defines a linear storage structure to which items are added at one end and removed from the other. For this reason, a queue is sometimes known as a First In First Out (FIFO) data structure. The end at which data items are added is known as the rear of the queue. The end from which items are removed is known as the front of the queue. A queue is assigned a front pointer and a rear pointer.

Figure 1 shows just such a queue. The item at the front of the queue has been in the queue the longest. The item at the rear of the queue is the most recently added one.

Figure 1 Queue containing four integers and showing front and rear pointers

Figure 2(a)

Figure 2(b)

Figure 2(c)

Figure 2(a) shows the queue after one item has been removed. Removal has a strange meaning in queue programming. Removal actually means taking a copy of the item at the front of the queue and then incrementing the front pointer by one so that the next item in the queue is now at the front of the queue.

Figure 2(b) shows the queue after a single item has been added. The item has been added at the rear of the queue and becomes the new rear. The rear pointer was incremented by one before the new item in the queue was added.

Figure 2(c) shows the queue after a single item has been removed from the front and a single item has been added to the rear.

If the programming language used to create a queue does not have a native data type for creating queues then a queue must be built from primitives that the programming language does possess.

Here is one example. The queue can be created using a one-dimensional array primitive as follows:

QueueType = Array[1..200] of Integer;

The front and rear pointers F and R, respectively, are just integer variables.

For the empty queue

F = 0 and R = 0

To add an item to the queue

If R <> 200

 Then

 Begin

 If F = 0

 Then F := 1;
 R := R + 1;

 Queue[R] := Item;

End

Else Writeln(‘Queue Full’);

To remove an item from the queue

If F <> 0

 Then

 Begin

 Item := Queue[F];

 If F = R

 Then

 Begin

 F := 0;

 R := 0;

 End

 Else F := F + 1;

 End

 Else Writeln(‘Queue Empty’);

NORMALISATION EXERCISE

Normal forms, when considered in isolation from other factors, do not guarantee a good database design. However, normalising a database does bring about some benefits and enables some problems to be avoided. What are these?

The following exercise starts with an un-normalised single table (more correctly, relation, as the table form is a depiction of a relation). It contains two repeating groups. These are enclosed in square brackets. The first records loans of copies of a particular book title. A particular book title is identified uniquely by its ISBN. No two books in the world can have the same ISBN. A library may, however, have more than one copy of a particular book title. Each copy may be loaned to a borrower. The table must therefore record who has borrowed which copy of a particular book title. A borrower may reserve a particular book title. In fact, a book title may be reserved by more than one borrower. This is the purpose of the second repeating group in the table.

Question 1

(a) Draw the table with the appropriate column headings. Insert some dummy data, enough to illustrate both repeating groups. You should also have data for book titles which are not on loan and not reserved (null values in the corresponding columns for these) as well as book titles which are on loan and reserved. Include a range of combinations of all these.

(b) Place this table in first normal form.
REMOVE REPEATING GROUP
(c) Place this table in second normal form.
REMOVE PARTIAL KEY

DEPENDENCE

(d) Place this table in third normal form.
REMOVE TRANSITIVELY

DEPENDENT NON-KEY ATTR.

(e) Place this table in BCNF. (For a table/relation with only one candidate key, 3NF and BCNF are equivalent.)

BookData(ISBN, Author, Title, Publisher, YearOfPublication, Category, Type, ApproximateCost, DateOfPurchase, NoOfCopies, [CopyNo, BorrowerNo, BorrowerName, TutorGroup, DateDueBack, MaxNoOfLoanBooksAllowed], [BorrowerNo, Borrowername, TutorGroup, MaxNoOfLoanBooksAllowed, DateReserved])

In BCNF this table becomes four(five) tables:

BookData (this a different version of the above table, we should rename it Book)

Borrower

BookCopy

(Loan)

Reservation

(f) Create this database in Database Desktop adding data from the table in (a).

(g) Write a Delphi program which enables viewing of the data in each table. The program should use a method that will allow more data to be added and existing data to be edited/deleted.

(h) Now write a query in SQL into your program. The query should execute when a button is pressed. The results should be displayed. The query should be as follows:

Select Title, Author

 From BookData

 Where BookCopy.ISBN = BookData.ISBN

 And BookCopy.BorrowerNo > 0

 And DateDueBack = :DateDueBackVar

DateDueBackVar is a variable. Find out how to set up a variable for a particular query. Your program should use a component called a DateTimePicker to make the selection of dates easier for the user. Find out how to use the DataTimePicker component.

Question 2

(c) Define the following terms:

(i) Entity

(ii) Attribute

(iii) Entity identifier

(iv) Candidate identifier

(v) Relationship

(vi) Degree of a relationship

(vii) Relational database

(viii) Relation

(ix) Tuple

(x) Primary key

(xi) Alternate key

(xii) Foreign key

(b) Draw an entity-relationship diagram for the BCNF relations (tables)

 Question 3
Write out the BCNF relations which have a foreign key. Indicate clearly which attribute(s) in each relation represent the foreign key.

Question 4

(a) What is a database?

(b) What is a Database Management System or DBMS?

(c) Explain with the aid of a diagram the three level architecture of a DBMS.

(d) Why does a DBMS/database use indexes?

(e) What is meant by the following terms:

(i) Primary index?

(ii) Secondary index?

Solutions

Question 1

(a)

	ISBN
	Author
	Title

	NoOf

Copies
	Copy

No
	LBorrower

No

	RBorrower

No

	1-85..
	Bond
	R...
	
	6
	1

2

3

4

5

6
	10

3

15

21

27

34
	
	2

8

0

0

0

0

	0-20..
	Smith
	T...
	
	4
	1

2

3

4
	18

0

0

0
	
	0

0

0

0

	1-86..
	Binns
	F..
	
	2
	1

2
	32

56
	
	17

0

	0-23..
	
	
	
	
	
	0
	
	0

	0-34..
	
	
	
	
	
	0
	
	0

	0-12..
	
	
	
	
	
	0
	
	0

(b) It is important at this stage to decide what range of values attribute CopyNo should have. I have decided that CopyNo should have a range 1..n for each ISBN. For example, if there are six copies of a book title with ISBN 1-85805-080-4 then the copies would be assigned CopyNo values 1..6. A different title with ISBN 0-7487-0563-5 and three copies would be assigned the values 1..3 for CopyNo. The alternative is to assign a unique value for CopyNo to each book. This has implications for the final number of tables. The former method may not require a Loan table.

First Normal Form – remove repeating groups

BookData(ISBN, CopyNo, Author, Title, Publisher, YearOfPublication, Category, Type, ApproximateCost, DateOfPurchase, NoOfCopies, BorrowerNo, BorrowerName, TutorGroup, DateDueBack, MaxNoOfLoanBooksAllowed)

Reservation(ISBN, BorrowerNo, Borrowername, TutorGroup, MaxNoOfLoanBooksAllowed, DateReserved)

(c)

Second Normal Form

BookData(ISBN, Author, Title, Publisher, YearOfPublication, Category, Type, NoOfCopies)
BookCopy(ISBN, CopyNo, ApproximateCost, DateOfPurchase, BorrowerNo, BorrowerName, TutorGroup, DateDueBack, MaxNoOfLoanBooksAllowed)

Reservation(ISBN, BorrowerNo, DateReserved)

Borrower(BorrowerNo, Borrowername, TutorGroup, MaxNoOfLoanBooksAllowed)

(d)

Third Normal Form

BookData(ISBN, Author, Title, Publisher, YearOfPublication, Category, Type, NoOfCopies)
Year of publication is associated with ISBN. If book republished it would have a different ISBN because it would be a different edition. An edition may be reprinted a number of times but it will still be the same edition.

BookCopy(ISBN, CopyNo, ApproximateCost, DateOfPurchase, BorrowerNo, DateDueBack)

Reservation(ISBN, BorrowerNo, DateReserved)

Borrower(BorrowerNo, Borrowername, TutorGroup, MaxNoOfLoanBooksAllowed)

(e) The tables are also in BCNF

Question 2

(a)

(i) An entity is an object, person, place, concept, activity, event or thing of interest to an organisation and about which data is recorded.

(ii) An attribute is a property or characteristic of an entity

(iii) An entity identifier is an attribute or combination of attributes which uniquely identifies an instance or occurrence of the entity.

(iv) A candidate identifier is any attribute or combination of attributes which uniquely identifies an instance or occurrence of an entity. (One candidate identifier is chosen as the entity identifier.

(v) A relationship is an association or link between two entities.

(vi) The degree of a relationship between two entities refers to the number of entity occurrences of one entity which are associated with just one entity occurrence of the other and vice versa.

(vii) A relational database consists of a collection of tables.

(viii) A relation is a mathematical concept with a name and a set of attributes, its physical depiction is a table with named columns. For example,

Student(StudentIdNo, Surname, Forename, DateOfBirth)

The name of the relation is Student, an example of an attribute is Surname.

(ix) A tuple is a row of a table.

(x) The primary key of a relation is an attribute or combination of attributes that uniquely identifies a single occurrence or tuple of the relation. The attribute or combination of attributes is underlined.

(xi) An alternate key is an attribute or combination of attributes that uniquely identifies a single occurrence or tuple of the relation and which has not been chosen as the primary key of the relation.

(xii) A foreign key is a non-key attribute in one relation and the primary key in another relation. It is a shared or common attribute for two relations which model two entities between which a relationship exists.

For example,

HospitalWard(WardName, NoOfBeds)

Patient(PatientNo, Surname, Forename, DateOfBirth, WardName)

are two relations. WardName is the primary key in relation HospitalWard and a foreign key in relation Patient.

(b)

Entity-Relationship Diagram

Question 3

BookCopy(ISBN, CopyNo, ApproximateCost, DateOfPurchase, BorrowerNo, DateDueBack)

Reservation(ISBN, BorrowerNo, DateReserved)

Question 4

(a) A database is an integrated collection of non-redundant data stored in different types of records connected by links, and in a way that makes the records accessible from more than one application.

(b) A DBMS is a software system that enables the definition, creation and maintenance of a database and which provides controlled access to this database.

(c) The three level architecture of a DBMS consists of external, logical and storage schemas (definitions)

The storage schema specifies how the data is actually stored. The logical schema specifies what data is stored in the database. The external schema specifies what views of this data are available to users.

(d) An index is a mechanism for reducing the time taken to find a specific item of data in a database.

(i) A primary index is an index made on a unique field/attribute of a relation.

(ii) A secondary index is an index made on a non-unique field/attribute of a relation.

Primary key from one side of relationship is exported to many side where it is a non-key attribute

Foreign key from Book

Foreign key from Borrower

Foreign key from Book

User 1

Borrower

Reservation

BookCopy

BookData

User 1

User 1

External

Schema

or User Views

Logical or Conceptual

Schema

Storage

Schema

File 5 + indexes

File 4 + indexes

File 3 + indexes

File 2 + indexes

File 1 + indexes

Base Table 3

Base Table 2

Base Table 1

View 2

View 2

View 1

18

9

27

12

Front Pointer

Rear Pointer

12

27

9

18

Rear Pointer

Front Pointer

4

12

27

9

18

Rear Pointer

Front Pointer

1

4

12

27

9

18

Rear Pointer

Front Pointer

Var

 Queue : QueueType;

 F, R : Integer;

 Item : Integer;

4

Rear Pointer, R

3

3

5

2

10

6

Front Pointer, F

1

1

Array subscript

Figure 3 Queue with front pointer pointing to the first row of array, integer 6 and rear pointer pointing to row 3, integer 5

1

© Dr K. R. Bond 2000

